The Green-tao Theorem on Arithmetic Progressions in the Primes: an Ergodic Point of View

نویسنده

  • BRYNA KRA
چکیده

A long-standing and almost folkloric conjecture is that the primes contain arbitrarily long arithmetic progressions. Until recently, the only progress on this conjecture was due to van der Corput, who showed in 1939 that there are infinitely many triples of primes in arithmetic progression. In an amazing fusion of methods from analytic number theory and ergodic theory, Ben Green and Terence Tao showed that for any positive integer k, there exist infinitely many arithmetic progressions of length k consisting only of prime numbers. This is an introduction to some of the ideas in the proof, concentrating on the connections to ergodic theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Green-Tao Theorem on Primes in Arithmetic Progression: A Dynamical Point of View

A long standing and almost folkloric conjecture is that the primes contain arbitrarily long arithmetic progressions. Until recently, the only progress on this conjecture was due to van der Corput, who showed in 1939 that there are infinitely many triples of primes in arithmetic progression. In an amazing fusion of methods from analytic number theory and ergodic theory, Ben Green and Terence Tao...

متن کامل

Primes in Arbitrarily Long Arithmetic Progression

It has been a long conjecture that there are arbitrarily long arithmetic progressions of primes. As of now, the longest known progression of primes is of length 26 and was discovered by Benoat Perichon and PrimeGrid in April, 2010 ([1]): 43142746595714191+23681770·223092870n for n = 0, 1, · · · , 25. Many mathematicians have spent years trying to prove (or disprove) this conjecture, and even mo...

متن کامل

The Dichotomy between Structure and Randomness, Arithmetic Progressions, and the Primes

A famous theorem of Szemerédi asserts that all subsets of the integers with positive upper density will contain arbitrarily long arithmetic progressions. There are many different proofs of this deep theorem, but they are all based on a fundamental dichotomy between structure and randomness, which in turn leads (roughly speaking) to a decomposition of any object into a structured (low-complexity...

متن کامل

Analysis and Ergodic Theory

We cover the second half of Green and Tao’s proof of the existence of arbitrarily long arithmetic progressions of prime numbers, by constructing a function and pseudorandom measure suitably associated to the primes. 1.1 Orienting remarks The proof of the Green-Tao Theorem breaks conveniently into two distinct stages: 1. First, it is shown how the conclusion of Szemerédi’s Theorem can be extende...

متن کامل

Green-tao Theorem in Function Fields

We adapt the proof of the Green-Tao theorem on arithmetic progressions in primes to the setting of polynomials over a finite field, to show that for every k, the irreducible polynomials in Fq[t] contain configurations of the form {f + P g : deg(P) < k}, g = 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005